Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Trace Elem Med Biol ; 73: 127044, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936888

ABSTRACT

COVID-19 is a rapidly spreading disease, which has caught the world by surprise. Millions of people suffer from illness, and the mortality rates are dramatically high. Currently, there is no specific and immediate treatment for this disease. Remedies are limited to supportive regiments and few antiviral and anti-inflammatory drugs. The lack of a definite cure for COVID-19 is the reason behind its high mortality and global prevalence. COVID-19 can lead to a critical illness with severe respiratory distress and cytokine release. Increased oxidative stress and excessive production of inflammatory cytokines are vital components of severe COVID-19. Micronutrients, metalloids, and vitamins such as iron, manganese, selenium, Zinc, Copper, vitamin A, B family, and C are among the essential and trace elements that play a pivotal role in human nutrition and health. They participate in metabolic processes that lead to energy production. In addition, they support immune functions and act as antioxidants. Therefore, maintaining an optimal level of micronutrients intake, particularly those with antioxidant activities, is essential to fight against oxidative stress, modulate inflammation, and boost the immune system. Therefore, these factors could play a crucial role in COVID-19 prevention and treatment. In this review, we aimed to summarize antiviral properties of different vitamins and minerals. Moreover, we will investigate the correlation between them and their effects in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Selenium , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents , Dietary Supplements , Humans , Micronutrients/pharmacology , Micronutrients/therapeutic use , Minerals/therapeutic use , Selenium/therapeutic use , Vitamin A , Vitamins/pharmacology , Vitamins/therapeutic use
2.
Journal of Clinical Laboratory Analysis ; 36(5), 2022.
Article in English | ProQuest Central | ID: covidwho-1842786

ABSTRACT

ObjectivesThe spike protein has been reported as one of the most critical targets for vaccine design strategies against the SARS‐CoV‐2 infection. Hence, we have designed, produced, and evaluated the potential use of three truncated recombinant proteins derived from spike protein as vaccine candidates capable of neutralizing SARS‐CoV‐2 virus.MethodsIn silico tools were used to design spike‐based subunit recombinant proteins (RBD (P1), fusion peptide (P2), and S1/S2 cleavage site (P3)). These proteins were checked for their ability to be identified by the anti‐SARS‐CoV‐2 antibodies by exposing them to COVID‐19 serum samples. The proteins were also injected into mice and rabbit, and the antibody titers were measured for 390 days to assess their neutralization efficiency.ResultsThe antibodies that existed in the serum of COVID‐19 patients were identified by designed proteins. The anti‐spike antibody titer was increased in the animals injected with recombinant proteins. The VNT results revealed that the produced antibodies could neutralize the cultured live virus.ConclusionTruncated subunit vaccines could also be considered as robust tools for effective vaccination against COVID‐19. Using a combination of in silico, in vitro, and in vivo experiments, it was shown that the injection of spike‐based truncated recombinant proteins could stimulate long‐lasting and neutralizing antibody responses.

SELECTION OF CITATIONS
SEARCH DETAIL